Radio Detection of Neutrinos in Ice, and Detectors in Ice

Brian Clark

Michigan State University

Snowmass Community Summer Study Seattle, WA July 19th, 2022

Bottom Line Up Front (outline)

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

Bottom Line Up Front

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

Why Study UHE (>10 PeV) Neutrinos?

A Diverse Science Case

Particle Physics

Astrophysics

High-Energy and Ultra-High-Energy Neutrinos: A Snowmass White Paper

Editors: Markus Ackermann^a, Mauricio Bustamante^b, Lu Lu^c, Nepomuk Otte^d, Mary Hall Reno^e, Stephanie Wissel^f

Markus Ackermann,¹ Sanjib K. Agarwalla,²,³,⁴ Jaime Alvarez-Muñiz,⁵ Rafael Alves Batista,⁶ Carlos A. Argüelles,² Mauricio Bustamante,⁶ Brian A. Clark,⁶ Austin Cummings,¹⁰ Sudipta Das,²,³ Valentin Decoene,¹⁰ Peter B. Denton,¹¹ Damien Dornic,¹² Zhan-Arys Dzhilkibaev,¹³ Yasaman Farzan,¹⁴ Alfonso Garcia,⁶,¹⁵ Maria Vittoria Garzelli,¹⁶ Christian Glaser,¹² Aart Heijboer,¹8,¹⁰ Jörg R. Hörandel,¹8,²⁰ Giulia Illuminati,²¹,²² Yu Seon Jeong,²³ John L. Kelley,²⁴ Kevin J. Kelly,²⁵ Ali Kheirandish,¹⁰ Spencer R. Klein,²⁶,²² John F. Krizmanic,²ፆ Michael J. Larson,²⁰ Lu Lu,²⁴ Kohta Murase,¹⁰ Ashish Narang,² Nepomuk Otte,³⁰ Remy L. Prechelt,³¹ Steven Prohira,³²,3³ Mary Hall Reno,³⁴ Elisa Resconi,³⁵ Marcos Santander,³⁶ Victor B. Valera,ፆ Justin Vandenbroucke,²⁴ Olga Vasil'evna Suvorova,¹³ Lawrence Wiencke,³² Stephanie Wissel,¹⁰ Shigeru Yoshida,³ፆ Tianlu Yuan,²⁴ Enrique Zas,⁵ Pavel Zhelnin,² Bei Zhou³⁰

arXiv 2203.08096

See also CF7: "Cosmic Probes of Fundamental Physics"

Particle Physics

>TeV neutrinos are the highest energy leptons ever observed

Unique portals to particle physics at high energies

- νN cross-section, inelasticity beyond accelerators ($\sqrt{s} \sim 30$ TeV)
- Flavor oscillations at high-E and long baselines (Gpc)
- Fundamental properties: Lorentz Invariance, secret/self-interactions, DM annihilation $(\chi\chi\to\nu\bar{\nu})$, etc.

Bustamante & Connolly, PRL 122, 041101 (2019) arXiv <u>1711.11043</u>

Why Study UHE Neutrinos?

Origin of UHE cosmic rays – where and how?

Multimessenger astronomy

Neutrinos are unique probes of the distant, high-energy universe

- γ-rays absorbed
- CRs deflected; absorbed after ~100 Mpc

$$p + \gamma \rightarrow \Delta^+ \rightarrow p(n) + \pi^0(\pi^+)$$

Astrophysical Neutrinos

Neutrinos born in (or near) the cosmic ray accelerators

Unambiguous proof of hadronic acceleration

Detected in 2013!
(Only hints of sources)

Cosmogenic Neutrinos

Pions from the GZK interaction further decay

$$p + \gamma \rightarrow n + \pi^{+}$$

$$\mu^{+} + \nu_{\mu}$$

$$e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

Undetected. But! Shape encodes important astrophysics:

- Maximum accelerating energy
- Source redshift evolution
- Cosmic ray composition

Bottom Line Up Front

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

Observational challenges

UHE neutrinos are rare: $\ll 1 \, \text{/km}^3 \text{/yr}$

Fluxes too small for optical Cherenkov technology that underpins Baikal, ANTARES, IceCube, KM3NET, etc.

Need a new approach...

Radio Cherenkov Effect

"Askaryan" Emission

Suggested by G. Askaryan in 1962

Neutrino-induced particle shower becomes net *negatively* charged

Wavelengths the size of the shower add coherently

10cm transverse size \rightarrow $\mathcal{O}(MHz)$ - $\mathcal{O}(1GHz)$ broadband radio pulse

First Observation in Ice

Observed in ice by the ANITA collaboration in 2007 at SLAC End Station A (T486 experiment)

Observed a fast, polarized pulse whose power scaled with shower energy squared (coherent!)

Polar Ice

Polar ice has O(1km) attenuation lengths at radio frequencies; ideal for a sparse detector of adequate size

Barwick et al, JGlac V51 I173, 2005

RNO-G Collab, arXiv 2201.07846

Two basic strategies to view the emission:

- Panoptically, with remote observatories
- in-situ, with embedded arrays

Complimentary approaches!

Panoptic observatories have larger apertures, but higher energy thresholds

Disclaimer: I'm only addressing "passive" probes, in ice.

Bottom Line Up Front

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

Status Quo

Series of experiments have demonstrated the feasibility and scalability of the radio technology

ANITA

Antarctic Impulsive Transient Antenna

Array of horn antennas suspended from NASA Long Duration Balloon (LDB)

Four flights 2006-2016

- Askaryan (neutrino) channel: no excess above background
- ~100 UHECR seen

World leading limit above 10^{19.5} eV

Demonstrates the feasibility of the panoptic method

ANITA, PRD 99, 122001 (2019) arXiv 1902.04005

ARIANNA

Antarctic Ross Ice-Shelf Neutrino Array

Array of LPDA antennas deployed near ice surface at Moore's Bay in Antarctica

Ran 2011-2020, demonstrated feasibility and performance of autonomous, shallow detector

Cosmic rays ~1/day (calibration beam)

RF signal direction to ~0.3°

ARA

Askaryan Radio Array

Array of 5 stations, deployed 2012-2018 (still running) at South Pole

Demonstrated feasibility and performance of deep detector

 Ex: Reco vertex direction and distance to ~1° and ~30%

ARA Phased Array

Latest ARA station has threshold-lowering phased array trigger – 2x more effective volume at trigger level at 10 PeV!

ARA, NimA 2019.01.067, arXiv 1809.04573

100

Efficiency [%]

20

16

17

And events can be analyzed

21

---- Phased Array: Deep Analysis **Phased Array: Global Analysis** ARA Station 2 Analysis (2020)

19

18

 $Log_{10}(Energy [eV])$

Bottom Line Up Front

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

PUEO

Payload for Ultra High Energy Observations

Successor to ANITA experiment array of horns, with phased trigger, to fly on an LDB

>10x more sensitive than ANITA

Large instantaneous volume for transients, point sources, MMA

Funded through the NASA Pioneer Program, flight in ~2024!

JINST 16 (2021) 08, P08035 arXiv 2010.02892

RNO-G

Radio Neutrino Observatory – Greenland

Deployment under way in Greenland since 2021, goal of 35 stations

First UHE observatory in the northern hemisphere

RNO-G, JINST 16 P03025 (2021) arXiv 2010.2279

Combines strength of deep (ARA, RICE) and shallow (ARIANNA) technology

IceCube-Gen2 Radio

One element of the IceCube-Gen2 Facility

~200 station over 500 km², again comibining the deep and shallow technology

Experimental Outlook

Goal is sensitivity (90% CL UL) below 10⁻⁹ at 1 EeV

Experimental Outlook

Goal is sensitivity (90% CL UL) below 10⁻⁹ at 1 EeV

Future experiments chart steady progress in opening this discovery space

Diffuse Flux, 1:1:1 Flavor Ratio

Ongoing Work

A Small Sampling...

Understanding the icehorizontal propagation, birefringence

Quantifying and rejecting backgrounds— anthropogenic, cosmic rays/muons

Algorithmic—triggering, reconstruction of energy, direction, flavor

Connolly et al, PRD 105 123012 (2022) Birefringence explains features in ARA data

ARIANNA ICRC 2021 Machine Learning (CNN) trigger

RNO-G, EPJC 82: 147 (2022) "Forward Folding" energy reconstruction has ~30% uncertainty on shower energy

Conclusions

Studying UHE (>10 PeV) neutrinos is motivated by particle physics and astrophysics

The radio technique offers an efficient way to achieve necessary effective volumes (>100 km³)

The technology is mature, and supported by >decade of development and heritage

We are ready for a large-scale experimental effort

Backup

First Observation

First observed at SLAC Final Focus Test Beam in 2000 on sand

Observed a fast, 100% polarized pulse whose power scaled with shower energy (coherent!)

RICE

Radio Ice Cherenkov Experiment

Array of antennas deployed opportunistically with AMANDA

Located at the South Pole, ran 2000-2010

Demonstrated the feasibility of the *in-situ* approach

